
ALGORITHMS

1

LESSON PLAN 2025-26(WINTER)
NAME OF THE TEACHER : DEEPAK KUMAR BARDA, LECT.(STAGE-II,CSE)

ALGORITHMS(Course Code: CSEPC 209/TH5)

Day Unit Topic/Sub-Topic Learning
Objective Activities Homework

Unit I: Introduction to Algorithms (4 Lectures)

Unit-2:Algorithmic Complexity(8 Periods)

Subject:
Program: Diploma in Computer Science and Engineering
Semester: 3rd
Total Contact Hours: 45
Total Marks: 100
Assessment: Internal Assessment – 30, End Term – 70
After completion of the course, the students will be able to:
CO1- Define Algorithm with its characteristics.
CO2-Write algorithms with pseudocode.
CO3-Implement algorithms for sorting and searching using appropriate data structures.
CO4-Analyze the time and space complexity of algorithms
CO5-Design solutions using advanced data structures for real-world applications, such as shortest path
problems or flow-based algorithms.

1 I

Introduction to
Algorithms:

Definition and
Criteria

Define an algorithm
and its essential
characteristics.

Discuss real-world
algorithms (e.g., a

recipe, a set of
directions). Work
through a simple

example of a sorting
algorithm.

Write down a simple
algorithm for making

a sandwich, listing
all the steps.

2 I Writing an Algorithm
with Pseudocode

Write an algorithm
using pseudocode.

Introduce the
conventions of
pseudocode.

Practice writing a
simple algorithm for
finding the largest

number in a list.

Write a pseudocode
algorithm for
checking if a

number is prime.

3 I Algorithms vs.
Programs

Differentiate
between an

algorithm and a
program.

Discuss how an
algorithm is a

conceptual solution,
while a program is its
implementation in a
specific language.

Explain the
difference between
an algorithm and a

program in your own
words.

4 I Review and Mini-Quiz Consolidate
knowledge of Unit I.

Quiz on definitions,
characteristics, and
pseudocode. Solve a
simple pseudocode

problem.

N/A

5 II
Algorithmic
Complexity:
Introduction

Understand the
concept of
algorithmic
complexity.

Introduce the idea of
measuring an

algorithm's
efficiency. Discuss
why complexity is

important.

Research and write
a short paragraph
on why a computer
scientist needs to

understand
algorithmic
complexity.

COUR
SE

OBJE
CTIVE

CO1

CO1

CO1

CO1

CO2

ALGORITHMS

2

6 II Space Complexity
Analyze the

memory usage of
an algorithm.

Walk through
examples to

calculate the space
complexity of simple

algorithms.

Find the space
complexity of an

algorithm for
reversing an array.

7 II Time Complexity
Analyze the time an
algorithm takes to

run.

Work through
examples to

calculate the time
complexity of a loop

and nested loops.

Find the time
complexity of an

algorithm that
checks if an array
contains duplicate

elements.

8 II
Worst-Case,

Average-Case, and
Best-Case Analysis

Distinguish
between the three
types of analysis.

Compare the
performance of a

linear search
algorithm in its best,

average, and
worst-case
scenarios.

Write a short
paragraph on the

difference between
worst-case and
best-case time

complexity.

9 II Big-O Notation (1/2)
Understand the

concept of Big-O
notation.

Introduce Big-O as
the formal notation

for expressing
worst-case

complexity. Practice
finding the Big-O for

simple algorithms.

Determine the Big-O
notation for an

algorithm that finds
the sum of all

elements in an array.

10 II Big-O Notation (2/2)

Practice finding the
Big-O notation for

more complex
algorithms.

Work on examples
involving multiple
loops, conditional
statements, and
function calls.

Analyze a provided
code snippet and

determine its Big-O
notation.

11 II
Finding the

Complexity of an
Algorithm

Apply all concepts
to analyze a full

algorithm.

Walk through a
step-by-step
analysis of a

complete algorithm,
breaking it down into

operations.

Find the time and
space complexity of

an algorithm that
sorts an array using

a simple sorting
method.

12 II Unit II Review & Quiz

Consolidate
knowledge of
algorithmic
complexity.

Quiz on Big-O
notation, space and
time complexity, and
the different analysis

cases.

N/A

13 III

Recursive
Algorithms: Concept

of Recursion and
Iteration

Differentiate
between recursive

and iterative
algorithms.

Discuss the concept
of recursion with a
clear base case.

Compare a recursive
function to an

iterative loop for the
same task.

Write both a
recursive and an

iterative algorithm
for a simple problem

like summing
numbers up to N.

14 III

Examples of
Recursive

Algorithms: Factorial
and Fibonacci

Work through
classic examples of

recursive
algorithms.

Walk through the
logic and call stack
of the factorial and
Fibonacci functions.

Implement a
recursive function

for the factorial of a
number.

CO2

CO2

CO2

CO2

CO2

CO2

CO2

CO3

CO3

Unit-3: Recursive algorithms(6 Periods)

ALGORITHMS

3

15 III The Tower of Hanoi
Problem

Solve a classic
recursive problem.

Use a physical
model or an online

simulator to
demonstrate the

Tower of Hanoi. Walk
through the

recursive solution.

Write the
pseudocode for the

Tower of Hanoi
problem.

16 III Complexities of
Recursive Algorithms

Analyze the time
and space

complexity of
recursive functions.

Introduce recurrence
relations to analyze
the complexity of

recursive algorithms.

Find the time
complexity of a

recursive Fibonacci
algorithm.

17 III
Conversion of

Recursive to Iterative
Algorithm

Convert a recursive
solution to an
iterative one.

Show how to
transform a

recursive factorial
function into an

iterative one.
Discuss the pros and

cons of each.

Convert the
recursive Fibonacci

function into an
iterative one.

18 III Unit III Review & Quiz
Consolidate

knowledge of
recursion.

Solve practice
problems and

answer conceptual
questions on

recursion.

N/A

19 IV Algorithm Paradigms:
Greedy

Understand the
Greedy approach

to problem-solving.

Discuss the concept
of making locally
optimal choices.
Work through a

classic example like
the coin change

problem.

Explain why the
Greedy approach

doesn't always work
for every problem.

20 IV Algorithm Paradigms:
Divide and Conquer

Understand the
Divide and Conquer

approach.

Explain the three
steps: divide,
conquer, and

combine. Discuss
famous examples
like Merge Sort.

Write a short
explanation of the

Divide and Conquer
approach.

21 IV
Algorithm Paradigms:

Dynamic
Programming (1/2)

Understand the
concept of Dynamic

Programming.

Introduce the idea of
storing solutions to

subproblems to
avoid

re-computation.
Work through the

Fibonacci sequence
example with
memoization.

Explain the
difference between

Dynamic
Programming and

Divide and Conquer.

22 IV
Algorithm Paradigms:

Dynamic
Programming (2/2)

Solve a more
complex Dynamic

Programming
problem.

Work through a
problem like the

knapsack problem or
finding the shortest

path with costs.

Solve a simple
version of the

knapsack problem
on paper.

CO3

CO3

CO3

CO3

CO4

CO4

CO4

CO4

Unit-4 : Algorithm Paradigms(07 Periods)

ALGORITHMS

4

23 IV Algorithm Paradigms:
Backtracking

Understand the
Backtracking

approach.

Explain the concept
of exploring all

possibilities and
backtracking when a

path fails. Work
through the

N-Queens problem
or a Sudoku solver.

Draw a simple
search tree for a

backtracking
problem like finding

a path in a maze.

24 IV Algorithm Paradigms:
Branch and Bound

Understand the
Branch and Bound

approach.

Compare Branch
and Bound with
Backtracking,

emphasizing the use
of bounds to prune
the search space.

Research a
real-world

application of the
Branch and Bound

algorithm.

25 IV Unit IV Review & Quiz

Consolidate
knowledge of

algorithm
paradigms.

Solve conceptual
problems and trace
the execution of an

algorithm using each
paradigm.

N/A

26 V
Sorting: Bubble Sort,

Selection Sort,
Insertion Sort

Implement and
analyze simple

sorting algorithms.

Live coding session
for each sorting
algorithm. Draw

diagrams to show
how elements are

moved.

Manually sort a list
of 5 numbers using
each of the three

algorithms.

27 V Sorting: Merge Sort

Understand and
implement Merge

Sort using the
Divide and Conquer

approach.

Draw the recursion
tree for Merge Sort.
Code the algorithm.

Write the
pseudocode for the
merge() function in

Merge Sort.

28 V Sorting: Quicksort
Understand and

implement
Quicksort.

Discuss the choice
of pivot. Walk
through the

partitioning process
with a whiteboard

example.

Manually sort a list
of numbers using

Quicksort.

29 V Sorting: Heap Sort
Understand and
implement Heap

Sort.

Introduce the
concept of a heap

data structure.
Explain the heapify

process.

Draw the heap
representation of a

given array.

30 V Sorting: Radix Sort

Understand a
non-comparison-b

ased sorting
algorithm.

Explain how Radix
Sort works by

sorting based on
digits. Discuss its

limitations.

Manually sort a list
of 3-digit numbers
using Radix Sort.

CO4

CO4

CO4

CO5

CO5

CO5

CO5

CO5

Unit-5: Sorting(09 Periods)

ALGORITHMS

5

31 V
Searching: Symbol
Tables and Binary

Search Trees

Introduce the
concept of

searching and
Symbol Tables.

Explain how data is
stored and retrieved.

Introduce Binary
Search Trees as an

efficient data
structure for
searching.

Draw a Binary
Search Tree created

from a given
sequence of

numbers.

32 V Searching: Balanced
Search Trees

Understand the
need for balanced

trees.

Discuss how an
unbalanced tree can
degrade to a linked
list. Introduce the

concept of AVL trees
or Red-Black trees.

Explain why a
balanced tree is

important for search
efficiency.

33 V Hashing and Hash
Tables

Understand the
concept of hashing
and Hash Tables.

Explain how hashing
maps keys to

indices. Discuss
collision resolution

techniques.

Draw a simple hash
table and show how

a few key-value
pairs are stored.

34 V Unit V Review & Quiz

Consolidate
knowledge of
sorting and
searching.

Solve practice
problems on

different sorting
algorithms and

discuss the
complexities of

each.

N/A

35 VI Graphs: Definition
and Terminologies

Define key terms
related to graphs.

Draw a graph and
label the vertices,
edges, paths, and

cycles. Discuss
directed vs.

undirected graphs.

Find a real-world
example of a graph

and identify its
vertices and edges.

36 VI Graph Traversal: BFS
and DFS

Implement
Breadth-First
Search and

Depth-First Search.

Use a sample graph
to trace the path of
both BFS and DFS.

Discuss their
applications.

Given a graph, write
down the order of
nodes visited by

both BFS and DFS.

37 VI Topological Sorting

Understand the
concept and

applications of
topological sorting.

Walk through a
dependency graph

(e.g., course
prerequisites) and

perform a
topological sort.

Write a short
paragraph on a

real-world use case
for topological

sorting.

38 VI
Minimum Spanning

Tree Algorithms:
Prim's Algorithm

Understand and
implement Prim's

algorithm.

Trace the algorithm
on a weighted

graph, step by step,
to find the MST.

Solve a new MST
problem on a

weighted graph
using Prim's
algorithm.

39 VI
Minimum Spanning

Tree Algorithms:
Kruskal's Algorithm

Understand and
implement Kruskal's

algorithm.

Compare Prim's and
Kruskal's algorithms.

Trace Kruskal's on
the same weighted

graph.

Explain the key
difference between
Prim's and Kruskal's

algorithms.

CO5

CO5

CO5

CO5

CO5

CO5

CO5

CO5

CO5

Unit 6:Graphs(11 Periods)

