LESSON PLAN 2025-26(WINTER) ## NAME OF THE TEACHER: DEEPAK KUMAR BARDA, LECT.(STAGE-II,CSE) Subject: DIGITAL ELECTRONICS AND COMPUTER ORGANISATION(Course Code: CSEPC 207/TH4) Program: Diploma in Computer Science and Engineering Semester: 3rd Total Contact Hours: 45 Total Marks: 100 Assessment: Internal Assessment – 30, End Term – 70 After completion of the course, the students will be able to: CO1- Define key concepts of digital electronics, including number systems, Boolean algebra, and logic gates. CO2- Explain the principles behind combinational and sequential circuits, such as multiplexers, flip-flops, and counters, and their applications. CO3-Implement simplified logic circuits using Karnaugh Maps and Boolean algebra to solve real-world digital design problems. CO4-Analyze the instruction cycle, memory organization, and processor architecture to evaluate system performance and identify bottlenecks. CO5-Design to simulate a basic CPU operation or create a functional digital circuit using the concepts of digital electronics and computer organization. | Day | Unit | Topic/Sub-T
opic | Learning
Objective | Activities | Homework | COURSE
OBJECTIVE | |-----|--------|---|---|---|--|---------------------| | | Unit-1 | -Introduction | to Digital Ele | ectronics(8 Pe | eriods) | | | 1 | I | Difference
Between
Analog and
Digital Signals | Differentiate
between
analog and
digital signals
and their
applications. | Compare analog vs. digital clocks and thermometers . Discuss the advantages of digital systems. | Find and list 3
real-world
examples of
both analog
and digital
signals. | CO1 | | 2 | I | Number
Systems:
Binary, Octal,
Decimal, and
Hexadecimal | Explain the concept of different number systems used in computing. | Convert numbers between the four systems on a whiteboard and with online tools. | Convert the decimal number 255 to binary, octal, and hexadecimal. | CO1 | | 3 | I | Conversion
Between
Number
Systems (1/2) | Convert
numbers from
any base to
decimal. | Practice converting binary, octal, and hexadecimal numbers to their decimal equivalents. | Convert 10110 from binary to decimal and 3A from hexadecimal to decimal. | CO1 | | | | | | Desetion | | | |---|----------|---|--|---|---|-----| | 4 | I | Conversion
Between
Number
Systems (2/2) | Convert
numbers from
decimal to
other bases. | Practice converting decimal numbers to binary, octal, and hexadecimal. | Convert 150
from decimal
to binary and
43 from
decimal to
octal. | CO1 | | 5 | I | Binary
Arithmetic:
Addition and
Subtraction | Perform basic
arithmetic
operations in
binary. | Solve binary addition and subtraction problems on the board. Emphasize the concept of borrowing and carrying. | Solve 3 binary
addition and
3 binary
subtraction
problems. | CO1 | | 6 | I | Boolean
Algebra:
Basic
Operations
and Laws | Understand
the
fundamental
operations
and laws of
Boolean
algebra. | Walk through the laws of Boolean algebra (e.g., De Morgan's Law, Associative Law) with truth tables. | Create truth
tables for A +
B * C and (A +
B) * (A + C). | CO1 | | 7 | I | Boolean
Algebra:
Simplification | Simplify Boolean expressions using the laws of Boolean algebra. | Work through
examples of
simplifying
complex
expressions
on the board. | Simplify the
Boolean
expression A
* B + A * (B +
C). | CO1 | | 8 | I | Unit I Review
& Quiz | Consolidate
knowledge of
number
systems and
Boolean
algebra. | Solve a mix of conversion and simplification problems. | N/A | CO1 | | | Unit-2-L | ogic Gates a | nd Circuits: L | ogic Gates(7 | Periods) | | | 9 | II | Logic Gates:
AND, OR,
NOT, NAND,
NOR, XOR,
XNOR | Identify and explain the function of the basic and universal logic gates. | Draw the symbols for each gate. Use interactive simulators to demonstrate their functionality. | Draw the
logic symbols
and truth
tables for all 7
logic gates. | CO1 | | 10 | II | Design of
Logic Circuits
Using
Boolean
Algebra (1/2) | Design a
simple logic
circuit from a
given Boolean
expression. | Work through
an example of
translating an
expression
like (A + B) *
C into a
circuit
diagram. | Draw the logic circuit for the expression A * B + C. | CO1 | |----|----|--|---|--|--|-----| | 11 | II | Design of
Logic Circuits
Using
Boolean
Algebra (2/2) | Design a
complex logic
circuit from a
word
problem. | Translate a word problem into a truth table, then a Boolean expression, and finally a circuit. | Design a circuit that outputs a 1 only when two of its three inputs are 1. | CO1 | | 12 | II | Karnaugh
Maps
(K-Maps) for
2- and
3-Variable
Simplification | Use K-Maps
to simplify
Boolean
expressions
with up to 3
variables. | Introduce K-Maps as a visual simplification tool. Practice grouping and finding simplified expressions. | Simplify the expression Σ(0, 1, 4, 5) using a K-Map. | CO1 | | 13 | II | K-Maps for
4-Variable
Simplification | Simplify
4-variable
expressions
using
K-Maps. | Practice grouping 4-variable K-Maps, including overlapping groups. | Simplify the expression Σ(0, 2, 5, 7, 8, 10, 13, 15) using a K-Map. | CO1 | | 14 | II | Practical
Applications
of Logic
Gates | Discuss
real-world
applications
of logic gates. | Watch videos
on how logic
gates are
used in
alarms,
calculators,
and computer
circuits. | Find and
explain how
logic gates
are used in a
traffic light
control
system. | CO1 | | 15 | II | Unit II Review
& Quiz | Consolidate
knowledge of
logic gates
and K-Maps. | Solve a mix of
design and
simplification
problems
using both
Boolean
algebra and
K-Maps. | N/A | CO1 | | | Unit-3-C | ombinational | and Sequent | tial Circuits(7 | periods) | | |----|----------|--|---|---|--|-----| | 16 | III | Combinationa
I Circuits:
Multiplexers
and
Demultiplexer
s | Explain the function and design of MUX and DEMUX circuits. | Draw block
diagrams and
truth tables
for a 4-to-1
MUX and a
1-to-4
DEMUX. | Design a
8-to-1 MUX
using 4-to-1
MUXes. | CO2 | | 17 | III | Combinationa
I Circuits:
Encoders and
Decoders | Explain the function and design of encoders and decoders. | Draw and explain a priority encoder and a 3-to-8 line decoder. | Explain how a decoder is used to select a specific memory location. | CO2 | | 18 | III | Sequential
Circuits:
Flip-Flops
(SR, JK) | Explain the operation of SR and JK flip-flops and their characteristic s. | Use timing diagrams to demonstrate the behavior of SR and JK flip-flops. | Draw the
logic diagram
and truth
table for a JK
flip-flop. | CO2 | | 19 | III | Sequential
Circuits: D
and T
Flip-Flops | Explain the operation of D and T flip-flops and their applications. | Discuss how D and T flip-flops are derived from the JK flip-flop. | Explain the
difference
between an
SR flip-flop
and a D
flip-flop. | CO2 | | 20 | III | Counters:
Synchronous
and
Asynchronou
s Counters | Differentiate
between
synchronous
and
asynchronous
counters. | Draw and explain the operation of a 3-bit ripple counter and a 3-bit synchronous counter. | Design a 4-bit
asynchronous
counter using
T flip-flops. | CO2 | | 21 | III | Registers and
Shift
Registers | Explain the function and types of registers. | Discuss the purpose of registers in CPUs. Demonstrate the operation of a simple shift register. | Draw a 4-bit
SIPO
(Serial-In,
Parallel-Out)
shift register. | CO2 | | 22 | III | Unit III Review
& Quiz | Consolidate knowledge of combinational and sequential circuits. | Solve
problems
related to
flip-flops,
counters, and
registers. | N/A | CO2 | | | Unit-4-Fundamentals of Computer Organization(6 Periods) | | | | | | | |----|---|---|--|--|--|-----|--| | 23 | IV | Basic
Structure of a
Computer | Identify the main components of a computer system. | Draw a block
diagram of a
computer
system,
labeling the
CPU, memory,
and I/O
devices. | Write a short
summary of
the role of the
CPU, memory,
and I/O in a
computer. | CO3 | | | 24 | IV | The
Instruction
Cycle: Fetch,
Decode,
Execute | Explain the
steps involved
in executing a
single
instruction. | Walk through a simple example of the instruction cycle using a mock instruction. | Explain each
step of the
instruction
cycle in your
own words. | CO3 | | | 25 | IV | Memory
Organization:
Types of
Memory (1/2) | Differentiate
between RAM
and ROM. | Discuss the
characteristic
s, volatility,
and uses of
RAM and
ROM. | Create a table
comparing
RAM and
ROM based
on volatility,
speed, and
size. | CO3 | | | 26 | IV | Memory
Organization:
Types of
Memory (2/2) | Understand
the purpose
of Cache and
Virtual
Memory. | Explain the concept of the memory hierarchy. Discuss how cache memory improves performance. | Write a paragraph explaining what virtual memory is and why it's used. | CO3 | | | 27 | IV | Introduction
to Buses | Explain the
function of
the Address
Bus, Data
Bus, and
Control Bus. | Use a diagram to illustrate how the three buses connect the CPU, memory, and I/O devices. | Describe the purpose of each bus in a computer system. | CO3 | | | 28 | IV | Unit IV Review
& Quiz | Consolidate
knowledge of
computer
organization. | Answer conceptual questions about the instruction cycle, memory, and buses. | N/A | CO3 | | | | Unit-5-Processor Architecture and Control(6 Periods) | | | | | | | |----|--|--|--|---|--|-----|--| | 29 | V | Microprocess
ors vs.
Microcontroll
ers | Differentiate
between
microprocess
ors and
microcontroll
ers. | Discuss the architecture and typical applications of both. | Research and
list 3 devices
that use a
microprocess
or and 3 that
use a
microcontroll
er. | CO4 | | | 30 | V | Basics of
Arithmetic
Logic Unit
(ALU) and
Control Unit | Understand
the function
of the ALU
and Control
Unit. | Draw a block
diagram of
the CPU,
highlighting
the ALU and
Control Unit.
Discuss their
roles. | Write a short
paragraph
explaining the
relationship
between the
ALU and the
Control Unit. | CO4 | | | 31 | V | Instruction
Set
Architecture
(ISA): RISC vs.
CISC | Compare and contrast RISC and CISC architectures. | Discuss the key characteristic s and trade-offs of RISC vs. CISC. | Research and list a microprocess or that uses a RISC architecture and one that uses a CISC architecture. | CO4 | | | 32 | V | Pipelining and
Performance
Optimization
(1/2) | Explain the concept of instruction pipelining. | Use a simple analogy (e.g., an assembly line) to explain pipelining and its benefits. | Identify a potential hazard that can occur in a simple 3-stage pipeline. | CO4 | | | 33 | V | Pipelining and
Performance
Optimization
(2/2) | Discuss other techniques for performance optimization. | Talk about techniques like branch prediction and superscalar execution. | Research and explain one performance optimization technique not discussed in class. | CO4 | | | 34 | V | Unit V Review
& Quiz | Consolidate
knowledge of
processor
architecture. | Solve
conceptual
problems
related to
pipelining and
ISA. | N/A | CO4 | | | | Unit-6-Input/Output Systems and Advanced Topics(11 Periods) | | | | | | | | |----|---|---|--|---|---|-----|--|--| | 35 | VI | I/O Devices
and
Interfaces | Identify
common I/O
devices and
their
interfaces. | Discuss how devices like keyboards, mice, and printers communicate with the computer. | Research the interface used by a modern SSD (e.g., SATA, PCIe). | CO5 | | | | 36 | VI | Interrupts and
DMA (Direct
Memory
Access) | Explain the concepts of interrupts and DMA. | Use a simple scenario to explain why interrupts are necessary. Discuss how DMA improves I/O performance. | Write a paragraph on the difference between programmed I/O and interrupt-driv en I/O. | CO5 | | | | 37 | VI | Overview of
Modern
Trends:
Multicore
Processors | Understand
the concept
and benefits
of multicore
processors. | Discuss the difference between a single-core and a multi-core processor and the challenges of parallel programming. | Research and explain the concept of hyper-threading. | CO5 | | | | 38 | VI | Modern
Trends: GPUs
and
Embedded
Systems | Explain the purpose and applications of GPUs and embedded systems. | Discuss how GPUs are different from CPUs and their role in parallel processing and AI. | Find and explain an example of an embedded system in a household appliance. | CO5 | | | | 39 | VI | Mini-Project:
Problem
Selection &
Proposal | Choose a
final project
to design or
simulate. | Brainstorm project ideas from the syllabus (e.g., a simple counter, a basic CPU operation). Write a project proposal. | Write a 1-page proposal for your mini-project, including objectives and components. | CO5 | | | | 40 | VI | Mini-Project:
Design Phase
(1/2) | Create the
high-level
design for the
mini-project. | Draw a block
diagram and
flowcharts for
the chosen
project. | Complete the logical design and flowcharts for your project. | CO5 | | | | | s(11 Periods) | vanced Topic | tems and Ad | Draw the | ugnt-6-tinU | | |-----------|---|---|---|--|---|---------------------------| | 41 | Research the int IVace used by a modern SSD (e.g., SATA, | Mini-Project:
Design Phase
(2/2) | Refine the circuit design or simulation steps. | detailed logic circuit for the digital circuit project or the detailed steps for the CPU simulation. | Complete the
detailed
design and
check it for
logical errors. | CO5 | | 42 | Write a paradVuph on the difference between programmed | Mini-Project:
Implementati
on & Testing | Begin
building the
project. | Use a logic simulator or a programming language to build and test the first part of the project. | Implement
the first major
component of
your project. | CO5 | | 43 | vinb-rametrii
VI | Mini-Project:
Implementati
on & Testing
(2/2) | Complete the project and test for functionality. | Finish building and testing the project. Debug any issues that arise. | Complete the implementati on and write a test plan. | CO5 | | 800
44 | explain the concept of hyper-thread | Mini-Project:
Finalization
and
Documentatio
n | Prepare the
project for
demonstratio
n. | Add comments to the code, write a README.md file, and prepare a presentation. | Write a report
summarizing
your project,
including the
design,
implementati
on, and
results. | CO5 4 | | 45 | excisin an example of ar example of ar example of ar expense of ar expense of archousehold appliance. | Mini-Project
Demonstratio
n & Final
Review | Present the project and review key course concepts. | Students demonstrate their final projects. A brief review of the entire course. | N/A | CO5 | | | Despair kum | an Bal
7-1025
of Teacher | | | Deepar James 11:00 | n Bal
h-1025
of HOD | | | | | | | | | | 600 | | | | | | |