
SOFTWARE ENGINEERING

1

LESSON PLAN 2025-26(WINTER)
NAME OF THE TEACHER : DEEPAK KUMAR BARDA, LECT.(STAGE-II,CSE)

SOFTWARE ENGINEERING (Course Code:TH3)

Period Topic Learning
Objectives Activity Homework

Unit 1: Introduction to Software Engineering(06 Periods
)

Subject:
Program: Diploma in Computer Science and Engineering
Semester: 3rd
Total Contact Hours: 60
Total Marks: 100
Assessment: Internal Assessment – 20, End Term – 80
 After completion of this course the student will be able to:
CO1-Understand the concept of Software Engineering.
CO2-Understand how costs, schedule and quality drive a software project.
CO3-Understand the role of software process and a process model in a project.
CO4-Understand planning and estimation of a software project.
CO5-Understand the role of SRS in a project and how requirements are validated
CO6-Know the key design concepts of software engineering.
CO7-Learn the structured code inspection process.
CO8-Learn how testing is planned and testing done.

COURSE
OBJECTI

VE

1
Program vs.

Software
Product

Differentiate
between a

single program
and a complex,

maintainable
software
product.

Discuss the difference
between a simple "Hello

World" program and a web
browser.

Find and analyze an example of
a simple program and a

complex software product.
CO1

2
Emergence of

Software
Engineering.

Understand the
historical

context and
reasons for the
formalization of

software
development.

Class discussion on the
"software crisis" and its

impact.

Read a short article on the
history of software development. CO1

3

Classical
Waterfall Model

and its
limitations.

Explain the
sequential

phases of the
Waterfall Model
and identify its
weaknesses.

Draw a simple Waterfall
diagram on the board and

label its phases.

Research a project type for
which the Waterfall model is

well-suited.
CO1

4

Iterative
Waterfall and
Prototyping

Models.

Describe how
these models
address the
limitations of
the classical

Waterfall
model.

Role-play a scenario where
prototyping is used to

refine requirements with a
client.

Compare and contrast the
Iterative Waterfall and

Prototyping models in a short
report.

CO1

5
Evolutionary
and Spiral
Models.

Understand
how these

models
accommodate
change and
manage risk

throughout the
development

cycle.

Draw the Spiral Model
diagram and explain its

iterative, risk-driven nature.

Find a real-world example of a
project that used the Spiral

Model.
CO1

SOFTWARE ENGINEERING

2

6 Comparison of
all models.

Evaluate
different

models based
on project type,
size, and risk.

Group activity where each
group is given a project
and must justify which
model they would use.

Final review of Unit 1 topics. CO1

7

Responsibility
of a Project
Manager.
Project

Planning.

List the key
roles and

responsibilities
of a project
manager.

Brainstorm a list of tasks a
project manager would

perform on a daily basis.

Research the "triple constraints"
(scope, time, cost) of project

management.
CO2

8

Metrics for
Project size
estimation

(LOC and FP).

Calculate
project size

using Lines of
Code (LOC)
and Function

Point (FP)
analysis.

Give a simple software
description and have

students practice a basic
Function Point count.

Complete a worksheet on
calculating LOC and FP for a

given problem statement.
CO2

9
Project

Estimation
Techniques.

Explain
different

methods for
estimating

project effort
and cost.

Discuss the differences
between expert judgment,

analogy, and
decomposition techniques.

Read about the differences
between a bottom-up and

top-down estimation approach.
CO2

10

COCOMO
Models (Basic

and
Intermediate).

Apply the
COCOMO I

and II models
to estimate a
project's effort
and schedule.

Work through a COCOMO
Basic calculation for a
project on the board.

Practice using COCOMO
Intermediate with a different set

of cost drivers.
CO2

11
COCOMO

Model
(Complete).

Explain the
differences and

increased
complexity of
the complete

COCOMO
model.

Group discussion on when
a complete COCOMO

model would be necessary.

Study the various cost drivers
used in the COCOMO models. CO2

12 Scheduling.

Understand the
importance of

scheduling and
techniques like
Gantt charts.

Students create a simple
Gantt chart for a class
project they've been

assigned.

Research and explain the
critical path method (CPM). CO2

13

Organization
and Team
structure.
Staffing.

Describe
different team
structures and
the roles within

a software
team.

Discuss the pros and cons
of hierarchical vs. flat team

structures.

Write a job description for a
"Software Engineer" and a

"Software Project Manager."
CO2

14 Risk
Management.

Identify,
analyze, and

mitigate project
risks.

Brainstorm a list of
potential risks for a project

and create a simple risk
register.

Read a case study of a project
that was derailed by
unmanaged risks.

CO2

15 Configuration
Management.

Explain the
importance of
version control
and managing
changes to a

project's
artifacts.

Live demonstration of a
version control system like

Git.

Install Git and set up a simple
repository on their local

machine.
CO2

Unit 2: Software Project Management(10 Periods)

SOFTWARE ENGINEERING

3

16 Unit 2 Review.

Consolidate
knowledge on

project
management

concepts.

Q&A session covering all
topics from the unit.

Study for an upcoming quiz on
Unit 2. CO2

17
Requirements
gathering and

analysis.

Understand
techniques for
eliciting and
analyzing
software

requirements.

Role-play an interview with
a "client" to gather

requirements for a new app
idea.

Write down the requirements
gathered from the role-play. CO3

18

Software
Requirements
Specification

(SRS).

Explain the
purpose and
importance of

an SRS
document.

Review a sample SRS
document provided by the

instructor.

Outline the sections of a basic
SRS document. CO3

19

Contents of
SRS and

characteristics
of a good SRS.

Describe the
key sections of

an SRS and
what makes a
requirement

effective.

As a class, evaluate some
example requirements and

determine if they are
"good" or "bad."

Rewrite a set of bad
requirements to make them

"good."
CO3

20 Organization of
SRS.

Understand
how to

structure a
large SRS
document.

Discuss different ways to
organize requirements

(e.g., by feature, by user).

Reorganize the outline from a
previous homework assignment. CO3

21
Techniques for
representing

complex logic.

Use decision
tables, decision
trees, and state

transition
diagrams to
represent
complex
system

behavior.

Create a decision table for
a simplified login process
with multiple conditions.

Draw a state transition diagram
for a user's lifecycle in a social

media app.
CO3

22 Unit 3 Review.

Consolidate
knowledge of
requirement

analysis.

Q&A session and a short
quiz on the key concepts.

Prepare for the midterm exam
(covering Units 1-3). CO3

Unit 3: Requirement Analysis and Specification(06 Periods
)

SOFTWARE ENGINEERING

4

Unit 4: Software Design(10 Periods
)

23

What is a good
S/W design.

Cohesion and
Coupling.

Define the
concepts of

cohesion and
coupling and
explain their

relationship to
good design.

Provide code snippets and
have students identify high
vs. low cohesion and tight

vs. loose coupling.

Read a chapter on design
principles from a recommended

textbook.
CO4

24

Neat
arrangement.
S/W Design
approaches.

Understand the
importance of

clear,
organized
design and

different design
strategies.

Discuss the differences
between object-oriented
and structured design.

Draw a simple class diagram for
a software system. CO4

25

Structured
analysis. Data
Flow Diagrams

(DFDs).

Introduce the
concepts of
structured

analysis and
the role of

DFDs.

Draw the symbols used in
DFDs and their meanings.

Draw a simple context diagram
(Level 0 DFD) for a library

system.
CO4

26 Designing
DFDs.

Create leveled
DFDs (Level 1,
Level 2, etc.) to

show a
system's

functionality.

Work through a complete
DFD example for an online

food ordering system.

Create a set of leveled DFDs for
a university's student
registration system.

CO4

27

Shortcomings
of DFDs.

Structured
design.

Identify the
limitations of
DFDs and

introduce the
concept of
structured

design.

Discuss what DFDs don't
show (e.g., control flow,

data structure).

Read about the transition from
structured analysis to structured

design.
CO4

28

Principles of
transformation

of DFD to
Structure

Chart.

Understand the
systematic
process of

converting a
DFD into a
Structure

Chart.

Walk through a
transformation from a DFD
to a Structure Chart on the

board.

Given a DFD, draw the
corresponding Structure Chart. CO4

29 Transform
analysis.

Apply
Transform

Analysis to a
DFD to derive a

Structure
Chart.

Practice identifying the
"central transform" in a

DFD.

Work on a Transform Analysis
problem. CO4

30 Transaction
analysis.

Apply
Transaction
Analysis to a

DFD to derive a
Structure

Chart.

Practice identifying the
"transaction center" in a

DFD.

Work on a Transaction Analysis
problem. CO4

31 Design Review.

Explain the
purpose and
process of a

design review.

Conduct a mock design
review for a simple system

design created by the
class.

Prepare a short presentation on
a design review checklist. CO4

SOFTWARE ENGINEERING

5

32 Unit 4 Review.

Consolidate
knowledge on

software design
principles and
techniques.

Q&A session and a review
of key diagrams.

Study for an upcoming quiz on
Unit 4. CO4

33
Characteristics

of a Good
Interface.

Identify the key
qualities of an
effective user

interface, such
as usability,

learnability, and
consistency.

Evaluate the user interface
of two popular mobile apps

and compare their
strengths and weaknesses.

Read about Nielsen's 10
Usability Heuristics. CO5

34 Basic concepts
of UID.

Understand
fundamental
principles of

user interface
design.

Discuss the difference
between a good user

experience (UX) and a
good user interface (UI).

Find examples of good and bad
UI design online and provide a

brief critique.
CO5

35 Types of User
Interfaces.

Differentiate
between

command-line,
graphical,
touch, and

other types of
user interfaces.

Discuss the advantages
and disadvantages of each
interface type for different

applications.

Design a simple interface for a
smart home device using a pen

and paper.
CO5

36
Components-b

ased GUI
development.

Explain how
reusable

components
are used to
build user
interfaces.

Discuss common UI
components like buttons,

text fields, and dropdowns.

Research a popular front-end
framework (e.g., React,

Angular) and its component
model.

CO5

37

Components-b
ased GUI

development
(continued).

Gain practical
understanding
of using a GUI

toolkit.

Live demonstration of
building a simple UI with a

drag-and-drop tool or a
front-end framework.

Use a GUI toolkit to create a
simple form with various

components.
CO5

38 Design for
accessibility.

Understand the
importance of
creating user
interfaces that
are accessible

to all users,
including those
with disabilities.

Watch a video on screen
readers and other assistive

technologies.

Research the Web Content
Accessibility Guidelines

(WCAG).
CO5

39 Design review
and feedback.

Learn how to
give and
receive

constructive
feedback on UI

designs.

Peer review of the UI
mock-ups created in a

previous homework
assignment.

Refine their UI design based on
the feedback received. CO5

40 Unit 5 Review.
Consolidate

knowledge of
UID.

Q&A and a short quiz. Prepare for an upcoming quiz
on Unit 5. CO5

41 Coding and
Code Review.

Understand the
role of coding
standards and

the value of
code reviews.

Provide a poorly written
code snippet and have

students refactor it
according to good coding

practices.

Write a short document on best
practices for a specific

programming language.
CO6

Unit 5: User Interface Design(08
 Periods)

Unit 6: Software Coding & Testing(12 Periods)

SOFTWARE ENGINEERING

6

42

Code
walk-throughs

and
inspections.

Describe the
structured

process of a
code

walk-through
and a code
inspection.

Conduct a mock code
walk-through with a simple

function.

Read a short article on the
differences between code

walk-throughs and inspections.
CO6

43

Introduction to
Software

Testing. Unit
Testing.

Explain the
purpose of

testing and how
to perform unit

tests.

Write a simple function and
then write a unit test for it
using a testing framework.

Complete a worksheet on
writing unit tests for various

functions.
CO6

44 Black Box
Testing.

Create test
cases based on

external
specifications

without
knowing the

internal code.

Given a specification for a
calculator, have students

create black-box test
cases.

Create black-box test cases for
a simple website form. CO6

45

Equivalence
Class

Partitioning and
Boundary Value

Analysis.

Apply these
techniques to

generate
effective

black-box test
cases.

Practice applying
Equivalence Class

Partitioning and Boundary
Value Analysis to a

problem on the board.

Complete a problem set
applying these techniques to a

new scenario.
CO6

46 White Box
Testing.

Create test
cases based on

the internal
structure and
logic of the

code.

Provide a code snippet
with conditional statements
and have students draw a

control flow graph.

Given a simple program, write
white-box test cases to achieve

full statement coverage.
CO6

47

White Box
Methodologies:

Statement,
Branch, and

Condition
coverage.

Define and
apply these

different
coverage
metrics.

Practice creating test cases
to achieve each type of

coverage for a given code
block.

Write test cases to achieve
100% branch and condition

coverage for a provided
function.

CO6

48

White Box
Methodologies:
Path coverage,

Cyclomatic
Complexity.

Explain path
coverage and
calculate the
Cyclomatic

Complexity of a
function.

Walk through the
calculation of Cyclomatic
Complexity for a function
with multiple loops and

if-statements.

Calculate the Cyclomatic
Complexity for a different

function.
CO6

49
Debugging
approaches

and guidelines.

Understand
systematic

methods for
finding and
fixing bugs.

"Debug this!" challenge.
Give students a broken
program and have them

use debugging tools to find
the error.

Write a blog post on their
favorite debugging technique. CO6

50

Integration
Testing.

Phased and
incremental
integration

testing.

Understand
how to test the
integration of

different
modules.

Discuss the differences
between top-down and
bottom-up integration

strategies.

Research and explain the
"big-bang" integration approach. CO6

51

System testing
(Alpha, Beta,

and
Acceptance

testing).

Explain the
purpose and
audience for
each type of
system test.

Discuss a recent software
release and whether it

went through Alpha or Beta
testing.

Write a brief acceptance test
plan for a new feature on a

well-known website.
CO6

