
DATA STRUCTURES

1

LESSON PLAN  2025-26(WINTER)
NAME OF THE TEACHER : DEEPAK KUMAR BARDA, LECT.(STAGE-II,CSE)

DATA STRUCTURES(Course Code: CSEPC 205/TH3)

Day Unit Topic/Sub-Topic Learning Objective Activities Homework

Subject: 
Program: Diploma in Computer Science and Engineering
Semester: 3rd
Total Contact Hours: 45
Total Marks: 100
Assessment: Internal Assessment – 30, End Term – 70
After completion of the course, the students will be able to:
CO1-Explain fundamental data structure concepts, classifications, and algorithm analysis.
CO2-Apply linear data structures such as stacks, queues, and their variations.
CO3-Develop linked list structures, including singly, doubly, and circular linked lists.
CO4-Implement non-linear data structures like trees and perform operations such as insertion, deletion,
and traversal.
CO5-Describe graph representations and traversal techniques for efficient data organization.

1 I
Introduction to Data

Structures: Basic
Terminology

Define core concepts
like data, data
structure, and

algorithm.

Interactive discussion
on real-world examples
of data structures (e.g.,

a phone book, a
playlist).

Research and write
down the

definitions of data,
data structure, and
algorithm in your

own words.

2 I Classification of
Data Structures

Differentiate
between linear and

non-linear data
structures.

Use a mind map to
visually categorize data

structures. Discuss
where each type is

commonly used.

Find and list two
examples of linear
and two examples
of non-linear data

structures.

3 I Operations on Data
Structure

Identify the
fundamental
operations

performed on data
structures (e.g.,

traversal, insertion,
deletion).

Group discussion on
which operations are
possible on different

data structures.

Write a short
paragraph

explaining the
difference between

searching and
sorting.

4 I Asymptotic Analysis
of Algorithms

Understand the
concept of time and
space complexity.

Introduce Big-O
notation with simple
code examples like

linear search vs. binary
search.

Analyze the time
complexity of a
simple loop that

prints numbers from
1 to N.

5 I Worst-Case Analysis
of Algorithms

Analyze the
worst-case scenario

for an algorithm's
performance.

Walk through an
example of worst-case

analysis for an
algorithm like bubble

sort.

Practice analyzing
the worst-case time

complexity of an
algorithm of your

choice.

COUR
SE

OBJE
CTIVE

UNIT I: Introduction to Data Structures (8 Hours)

CO1

CO1

CO1

CO1

CO1



DATA STRUCTURES

2

6 I
Best-Case and
Average-Case

Analysis

Distinguish between
best-case,

worst-case, and
average-case

analysis.

Compare the three
cases for a given

algorithm with different
input scenarios.

Given an algorithm,
determine its

best-case and
worst-case
scenarios.

7 I Review and
Mini-Quiz

Consolidate
knowledge of Unit I.

Solve practice
problems on Big-O
notation and basic

terminology.

N/A

8 I Unit I Assessment Demonstrate
mastery of Unit I.

Quiz on terminology,
classification, and
algorithm analysis.

N/A

9 II
Stacks: Introduction

& Array
Representation

Explain the LIFO
principle and

represent a stack
using an array.

Use a physical stack of
books to demonstrate
LIFO. Draw the array

representation on the
board.

Write down the
steps to implement

push and pop
operations on an

array-based stack.

10 II Stacks: Operations
on a Stack

Implement push,
pop, peek, and

isEmpty operations.

Live coding session to
build a simple stack

class in a programming
language.

Implement the stack
operations on a
provided code

template.

11 II

Applications of
Stacks: Infix to

Postfix
Transformation (1/2)

Convert an infix
expression to a

postfix expression
using a stack.

Work through a
step-by-step example

on the board,
demonstrating the

stack's role.

Convert a simple
infix expression

(e.g., A + B * C) to
postfix.

12 II

Applications of
Stacks: Infix to

Postfix
Transformation (2/2)

Continue practicing
complex

infix-to-postfix
conversions.

Pair programming
exercise to solve a

more complex
expression.

Convert a more
complex infix

expression with
parentheses and

multiple operators.

13 II
Applications of

Stacks: Evaluating
Postfix Expressions

Evaluate a postfix
expression using a

stack.

Walkthrough the
evaluation process with

a sample postfix
expression.

Evaluate a given
postfix expression
and show the state
of the stack at each

step.

14 II
Queues:

Introduction & Array
Representation

Explain the FIFO
principle and

represent a queue
using an array.

Use a queue of
students at a counter
to explain FIFO. Draw
array representation

and discuss front and
rear pointers.

Write down the
steps to implement

enqueue and
dequeue

operations.

15 II Queues: Operations
on a Queue

Implement enqueue,
dequeue, peek, and
isEmpty operations.

Live coding session to
build a simple queue

class.

Implement the
queue operations

on a provided code
template.

16 II
Types of Queues:
Dequeue, Circular

Queue

Understand and
implement variations

of queues.

Draw and explain the
concepts of Dequeue
and Circular Queue.

Discuss their
advantages.

Write a brief
explanation of why
a Circular Queue is
more efficient than

a linear queue.

CO1

CO1

CO1

CO2

CO2

CO2

CO2

CO2

CO2

CO2

CO2

UNIT II: Linear Data Structures (11 Hours)



DATA STRUCTURES

3

17 II
Applications of
Queues: Round
Robin Algorithm

Understand how
queues are used in

CPU scheduling.

Discuss the concept of
time slicing and the

role of the queue in the
Round Robin algorithm.

Explain another
real-world

application of a
queue (e.g., print

spooling).

18 II Review and
Mini-Quiz

Consolidate
knowledge of stacks

and queues.

Solve practice
problems and answer
conceptual questions.

N/A

19 II Unit II Assessment
Demonstrate

mastery of stacks
and queues.

Practical coding test
and a short quiz. N/A

20 III Linked Lists: Singly
Linked List

Understand the
structure and

concept of a singly
linked list.

Draw nodes and
pointers to visualize the

list. Discuss the
advantages over

arrays.

Draw a singly linked
list with 5 nodes.

Label the head and
a null pointer.

21 III

Linked Lists:
Representation in

Memory &
Operations (1/3)

Represent a singly
linked list in memory.

Code the basic node
structure and a class

for the linked list.

Write a function to
insert a new node
at the beginning of
a singly linked list.

22 III Linked Lists:
Operations (2/3)

Implement insertion
and deletion at the

end of the list.

Pair programming to
implement the

functions.

Implement a
function to search
for a specific node

in a singly linked list.

23 III Linked Lists:
Operations (3/3)

Implement insertion
and deletion at a
specific position.

Guided coding session
to handle edge cases

for insertion and
deletion.

Implement a
function to delete a

node at a given
position.

24 III Circular Linked Lists

Understand the
structure and

implementation of a
circular linked list.

Draw a circular linked
list and discuss the

operations specific to
it.

Convert a singly
linked list to a

circular linked list in
a code example.

25 III Doubly Linked Lists

Understand the
structure and

advantages of a
doubly linked list.

Draw and code the
Node structure with a

prev pointer.

Write a function to
insert a new node

at the end of a
doubly linked list.

26 III
Linked List

Representation of
Stacks

Implement stack
operations using a

linked list.

Compare array-based
and linked list-based

stack implementations.
Discuss the pros and

cons.

Write a short
paragraph on the

benefits of a linked
list stack over an

array stack.

27 III
Linked List

Representation of
Queues

Implement queue
operations using a

linked list.

Live coding session for
a linked list queue.

Write a function to
find the length of a

linked list queue.

28 III Review and
Mini-Quiz

Consolidate
knowledge of linked

lists.

Solve practice
problems on all types
of linked lists and their

applications.

N/A

CO2

CO2

CO2

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO3

UNIT III: Linked Lists (10 Hours)



DATA STRUCTURES

4

29 III Unit III Assessment
Demonstrate

mastery of linked
lists.

Practical coding test. N/A

30 IV Trees: Basic
Terminologies

Define tree-related
terms (e.g., root,

node, parent, child,
leaf).

Draw a tree structure
and label all the parts.

Use a family tree
analogy.

Draw a tree
structure and label
the depth, height,
and level of each

node.

31 IV
Binary Trees:
Definition and

Concepts

Understand the
properties of a

binary tree.

Discuss the rules for a
binary tree (max two
children per node).

Given a list of
numbers, draw the

resulting binary
search tree.

32 IV

Binary Tree
Representations:
Arrays and Linked

Lists

Represent a binary
tree in memory using

arrays and linked
lists.

Draw the two
representations on the
board. Discuss the pros

and cons of each.

Explain when a
linked list

representation of a
tree is better than

an array
representation.

33 IV
Operations on a

Binary Tree:
Insertion

Implement the
insertion operation in
a binary search tree.

Live coding session for
a basic binary tree.

Implement the
insertion logic on a
provided tree class.

34 IV
Operations on a

Binary Tree:
Deletion

Implement the
deletion operation
for various cases.

Walk through the three
cases for deletion (no

children, one child, two
children).

Given a binary
search tree,

perform a deletion
and draw the
resulting tree.

35 IV
Traversals: In-order,

Pre-order,
Post-order (1/2)

Understand and
implement the three

main traversal
methods.

Trace the path of each
traversal method on a

sample tree.

Given a tree, write
down the pre-order,

in-order, and
post-order
traversals.

36 IV
Traversals: In-order,

Pre-order,
Post-order (2/2)

Practice traversal
techniques on

different binary tree
structures.

Work on more complex
examples, including

trees with an
unbalanced structure.

Given a pre-order
and in-order

traversal,
reconstruct the

original tree.

37 IV Types of Binary
Trees

Identify different
types of binary trees
(e.g., full, complete,

perfect).

Discuss the properties
of each type. Use
visual examples to
differentiate them.

Categorize a few
provided tree

diagrams by type.

38 IV Graphs: Graph
Terminologies

Define graph-related
terms (e.g., vertex,

edge, degree).

Use a social media
network or a road map

as an analogy to
explain graph

concepts.

Draw a simple
graph and label the
vertices and edges.

39 IV
Representation of

Graphs: Set, Linked,
Matrix

Represent a graph in
memory using

adjacency lists and
matrices.

Draw and explain both
representations, and

discuss the trade-offs
in terms of space and

time complexity.

Given a graph, write
its adjacency matrix
and adjacency list
representations.

CO3

CO4

CO4

CO4

CO4

CO4

CO4

CO4

CO4

CO5

CO5

UNIT IV: Non-Linear Data Structures (16 Hours)




