
PROGRAMMING WITH PYTHON

1

LESSON PLAN 2025-26(WINTER)
NAME OF THE TEACHER : DEEPAK KUMAR BARDA, LECT.(STAGE-II,CSE)

PROGRAMMING WITH PYTHON (Course Code: CSEPC 203/TH2)

Day Unit Topic
Learning
Objective Activities Homework
Unit I: Introduction to Python (8 Lectures)

Subject:
Program: Diploma in Computer Science and Engineering
Semester: 3rd
Total Contact Hours: 45
Total Marks: 100
Assessment: Internal Assessment – 30, End Term – 70
After completion of the course, the students will be able to:

CO1-Define Python's core syntax, data types, and key concepts of object-oriented programming.

CO2-Explain how control structures and data structures function in Python.

CO3-Implement Python programs using file handling, modules, and libraries like NumPy, Pandas, and

Matplotlib for data analysis and visualization.

CO4- Analyze Python scripts to identify and resolve logical or syntactic errors and optimize code using

advanced techniques like recursion and lambda functions.

CO5-Develop a real-world mini-project by integrating Python concepts such as OOP, libraries, and

automation tools for practical problem-solving.

1 I
Overview of

Python: Features
and Applications

Understand what
Python is and its

main uses in
various fields.

Discussion on
Python's versatility;
show examples of
Python in web dev,
data science, and

automation.

Research a famous
company that uses
Python and write a
short summary of
how they use it.

2 I
Setting Up the
Python
Environment

Install Python and
a code editor (like
VS Code or
PyCharm).

Guided installation
of Python and a
chosen IDE. Run a
simple "Hello,
World!" script.

Set up the
environment on your
own computer and
run the "Hello,
World!" script.

3 I
Python Syntax:
Variables and
Data Types

Define and use
variables; identify
different data
types (e.g., int,
float, str).

Interactive coding
session with
variable assignment
and type checking
using type().

Write a script that
declares variables
for your name, age,
and favorite number.

4 I Python Operators
Use arithmetic,
comparison, and
logical operators.

Whiteboard
exercise to solve
simple
mathematical and
logical problems
using Python
operators.

Create a program
that converts Celsius
to Fahrenheit using
arithmetic operators.

5 I

Writing,
Executing, and

Debugging
Scripts (1/2)

Write and save
basic Python

scripts.

Step-by-step
walkthrough of
writing a script,
saving it, and

executing it from
the terminal.

Write a small script
to calculate the area

of a rectangle.

COURSE
OBJECTIVE

CO1

CO1

CO1

CO1

CO1

PROGRAMMING WITH PYTHON

2

6 I

Writing,
Executing, and

Debugging
Scripts (2/2)

Understand and fix
common syntax

and runtime errors.

Introduce common
errors (e.g.,
SyntaxError,
NameError).

Students
intentionally make
errors and debug.

Debug a provided
Python script that
contains multiple

errors.

7 I Review and
Mini-Project

Consolidate
knowledge of Unit I
through a practical

exercise.

Develop a simple
command-line
calculator that

takes two numbers
and an operator as

input.

Finish the calculator
project and add a
"power" operator.

8 I Unit I Assessment
Demonstrate

mastery of Unit I
topics.

Written quiz on
concepts and a
short practical

coding test.

N/A

9 II
Conditional

Statements: if,
else, elif

Use conditional
statements to

control program
flow.

Live coding a
simple program
that checks if a

number is positive,
negative, or zero.

Write a script that
determines if a

person is old enough
to vote.

10 II Loops: for loop
Iterate over

sequences using a
for loop.

Practice using for
loops with lists,
strings, and the

range() function.

Write a program to
print the first 10
even numbers.

11 II Loops: while loop
Use a while loop

for indefinite
iteration.

Compare for and
while loops. Write a

simple guessing
game using a while

loop.

Create a program
that prompts the

user for a password
until they enter the

correct one.

12 II Nested Loops
Use one loop inside

another to solve
complex problems.

Draw flowcharts for
nested loops before

coding; create a
program that prints

a pattern of
asterisks.

Write a program that
generates a

multiplication table
up to 10x10.

13 II
Functions:

Defining and
Calling

Create and call
your own
functions.

Practice defining
functions with and
without parameters
and return values.

Convert your
rectangle area
program into a

function.

14 II Functions: Scope
of Variables

Understand local
and global variable

scope.

Explain the concept
of scope with a
visual diagram.

Code examples that
demonstrate

variable scope
rules.

Predict the output of
provided code

snippets that involve
different variable

scopes.

CO1

CO1

CO1

CO2

CO2

CO2

CO2

CO2

CO2

Unit II: Control Structures and Functions (8 Lectures)

PROGRAMMING WITH PYTHON

3

15 II
Introduction to

Lambda
Functions

Write simple,
anonymous
functions.

Show how to use
lambda functions
with filter() and

map().

Convert a simple
named function into
a lambda function.

16 II Recursion
Solve problems by
calling a function
from within itself.

Walk through the
factorial and

Fibonacci sequence
examples,

emphasizing the
base case.

Write a recursive
function to calculate
the sum of numbers

from 1 to N.

CO2

CO2

PROGRAMMING WITH PYTHON

4

Unit III: Data Structures in Python (9 Lectures)

Unit IV: File Handling and Modules (5 Lectures)

17 III Data Structures:
Lists (1/2)

Create and
manipulate lists.

In-class exercises
on list creation,
indexing, slicing,

and common
methods like

append(), remove().

Write a program to
find the largest
number in a list.

18 III Data Structures:
Lists (2/2)

Work with lists of
different data

types and nested
lists.

Practice list
operations like

concatenation and
sorting.

Create a list of your
favorite movies and

then sort them
alphabetically.

19 III Data Structures:
Tuples

Understand the
immutability of

tuples and when to
use them.

Compare lists and
tuples; practice

tuple packing and
unpacking.

Create a function
that returns a tuple
of the average and

sum of a list of
numbers.

20 III Data Structures:
Sets

Use sets for unique
element storage

and mathematical
operations.

Code examples
demonstrating how

to add/remove
elements and
perform set

operations (union,
intersection).

Given two lists, find
the common

elements and the
unique elements in

each.

21 III Data Structures:
Dictionaries (1/2)

Create and access
key-value pairs in

dictionaries.

Build a simple
contact book or
glossary using
dictionaries.

Create a dictionary
of countries and

their capitals.

22 III Data Structures:
Dictionaries (2/2)

Iterate through
dictionaries and

use common
methods.

Practice using
.keys(), .values(),

and .items() to loop
through a
dictionary.

Write a program to
count the frequency

of each word in a
given sentence.

23 III

List
Comprehensions

and Dictionary
Comprehensions

Write concise code
for creating new

lists and
dictionaries.

Convert traditional
loops for list and

dictionary creation
into one-line

comprehensions.

Rewrite your list of
even numbers

program using a list
comprehension.

24 III Working with
Strings

Manipulate strings
using methods and

slicing.

Practice with string
methods like

upper(), lower(),
strip(), and split().

Write a function that
takes a sentence

and returns a list of
its words.

25 III
Python's

collections
Module

Use specialized
container data

types.

Introduce Counter,
defaultdict, and

deque with
practical use cases.

Use Counter to find
the most common

word in a paragraph.

26 IV
File Operations:

Reading, Writing,
Appending

Read from and
write to text files.

Hands-on practice
opening, reading,

and writing to a .txt
file. Emphasize
using the with

statement.

Write a program that
reads a file and

writes its content to
another file.

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO4

PROGRAMMING WITH PYTHON

5

27 IV Working with CSV
Files

Read and write
data in CSV format.

Introduce the csv
module. Read data
from a sample CSV
file and write data

to a new one.

Create a program
that reads a CSV file

of student grades
and calculates the
average for each

student.

28 IV Working with
JSON Files

Handle JSON data
in Python.

Introduce the json
module. Load data
from a JSON file

and dump Python
data to a new JSON

file.

Write a script to
fetch data from a

public API endpoint
and save it to a local

JSON file.

29 IV
Built-In Modules
(e.g., math, os,

datetime)

Use popular
built-in modules to

solve common
problems.

Explore functions
from math and os.

Use datetime to get
the current date

and time.

Use the os module
to list all files in a
specific directory.

30 IV
Creating and
Using Custom

Modules

Organize code into
reusable modules.

Show how to create
a .py file and import

its functions into
another script.

Create a module
with functions for

common geometric
calculations and use

it in a separate
program.

31 V

OOP:
Understanding

Classes and
Objects

Define classes and
create objects.

Walkthrough the
concept of a class
as a blueprint and

objects as
instances. Create a

Dog class.

Create a Car class
with attributes like

color and make.

32 V
Concepts of

Encapsulation
and Inheritance

Understand how to
hide data and

create specialized
classes.

Show how to use
private attributes
and demonstrate

inheritance by
creating a Poodle
class that inherits

from Dog.

Create a Vehicle
class and then

create an ElectricCar
class that inherits

from it.

33 V Concepts of
Polymorphism

Use a single
interface for

different data
types.

Explain
polymorphism

through method
overriding in
subclasses.

Demonstrate
polymorphism with a

group of different
animal classes that
all have a speak()

method.

34 V Working with
Magic Methods

Use dunder
(magic) methods

for operator
overloading.

Show how __init__,
__str__, and
__add__ can

customize class
behavior.

Implement __str__
for your Car class to

print a readable
representation.

CO4

CO4

CO4

CO4

CO5

CO5

CO5

CO5

Unit V: Object-Oriented Programming (OOP) (5 Lectures)

PROGRAMMING WITH PYTHON

6

35 V
Exception

Handling in
Python

Handle errors
gracefully using try,

except, finally.

Introduce common
exceptions and

show how to use a
try-except block to
prevent a program

from crashing.

Write a program that
asks for a number

but handles a
ValueError if the user

enters text.

36 VI Introduction to
Libraries: NumPy

Use NumPy for
numerical

operations on
arrays.

Show the speed
and efficiency of

NumPy arrays
compared to

Python lists for
mathematical

operations.

Perform
element-wise
addition and

multiplication on two
NumPy arrays.

37 VI Introduction to
Libraries: Pandas

Use Pandas for
data manipulation

and analysis.

Introduce
DataFrames and
Series. Load data

from a CSV file into
a DataFrame and

perform basic
operations.

Calculate the mean
and standard
deviation of a

column in a Pandas
DataFrame.

38 VI
Mini-Project:

Problem
Selection

Choose a
real-world problem

to solve with
Python.

Brainstorm project
ideas and narrow
down the scope.

Start outlining the
project

requirements.

Write a brief project
proposal detailing
the problem, data

source, and intended
functionality.

39 VI
Mini-Project:

Data Collection &
Cleaning

Gather and
prepare the data
for the project.

Find a dataset
online (e.g., Kaggle,
data.gov) or create

a mock dataset.
Use Python to clean
and preprocess the

data.

Clean up the
project's dataset,
handling missing

values and incorrect
data types.

40 VI

Mini-Project:
Core Logic

Development
(1/2)

Begin
implementing the
main logic of the

project.

Write the core
functions and
classes for the

project. Test each
component
individually.

Implement the first
major feature of your

mini-project.

41 VI

Mini-Project:
Core Logic

Development
(2/2)

Continue building
the project's
functionality.

Integrate the
different parts of
the project. Work
on any remaining

features.

Finish implementing
the core logic and

ensure it runs
without errors.

42 VI
Mini-Project:

Refinement and
Documentation

Improve code
readability and add

comments.

Review and refactor
the code. Write
clear comments

and a README.md
file explaining the

project.

Document your code
thoroughly with
comments and a
project overview.

CO5

CO5

CO5

CO5

CO5

CO5

CO5

CO5

Unit VI: Advanced Python and Applications (10 Lectures)

