
PROGRAMMING WITH C++

1

LESSON PLAN 2025-26(WINTER)
NAME OF THE TEACHER : DEEPAK KUMAR BARDA, LECT.(STAGE-II,CSE)

PROGRAMMING WITH C++(Course Code: CSEPC 201)

Lesson
No.

Topic/Sub-Topi
c Learning Objective Activity Homework

Introduction to Object-Oriented Programming & C++ Basics(12 Hours)

Subject:
Program: Diploma in Computer Science and Engineering
Semester: 3rd
Total Contact Hours: 45
Total Marks: 100
Assessment: Internal Assessment – 30, End Term – 70
After completion of the course, the students will be able to:
CO1-Describe object-oriented programming (OOP) principles.
CO2-Develop proficiency in C++ syntax and programming constructs.
CO3-Implement advanced OOP features for software design.
CO4-Demonstrate polymorphism and operator overloading.
CO5-Handle exceptions and ensure robust program execution.

1 Introduction to
OOP Principles

Students will be able
to differentiate

between procedural
and object-oriented

programming
paradigms.

Class discussion
and whiteboard

session
contrasting

procedural vs.
OOP with a
real-world

analogy (e.g.,
building a car vs.

a house).

Research and write a
short summary of the
key principles of OOP

(Encapsulation,
Inheritance,

Polymorphism,
Abstraction).

2
User-Defined
Types: Structs

and Unions

Students will be able
to define and access

data within struct
and union types.

In-class coding:
Create a struct to

represent a
student with

name, roll
number, and

marks.

Write a program that
uses a union to store
either a student's ID
(int) or their name

(string) and
demonstrates how

unions save memory.

3 Getting Started
with C++ Syntax

Students will be able
to write and compile

a basic "Hello,
World!" program.

Live coding
demonstration of

writing, saving,
and compiling a

simple C++
program in an

IDE.

Write a program that
prints your name and

a short bio to the
console.

4
Data Types,

Variables, and
Strings

Students will be able
to declare variables
with different data
types and use the
std::string class.

A short quiz on
identifying the

correct data type
for various pieces

of information
(e.g., an age, a
bank balance, a

name).

Write a program that
asks the user for their

favorite movie and
year, stores the
information in

variables, and prints it
in a formatted

sentence.

COURSE
OBJECTIVE

CO1

CO1

CO1

CO1

PROGRAMMING WITH C++

2

5 Functions and
Default Values

Students will be able
to define and call

functions, and utilize
default parameter

values.

Pair
programming
exercise: Each
pair writes a
function to

calculate the
area of a

rectangle, with
default values for
length and width.

Create a function to
calculate the power of

a number, with a
default exponent of 2.

6

Recursion and
Function

Overloading
(Intro)

Students will be able
to explain the

concept of recursion
and recognize its

basic
implementation.

Group activity:
Trace the

execution of a
recursive

factorial function
on a whiteboard.

Write a recursive
function to calculate

the nth Fibonacci
number.

7 Namespaces

Students will be able
to use namespaces

to organize code
and avoid naming

conflicts.

Live coding demo
showing the

problem of name
collision and how

std:: and using
namespace solve

it.

Rewrite a simple
program to use a

custom namespace
for your own

functions.

8 C++ Operators

Students will be able
to correctly use

arithmetic,
relational, and

logical operators in
expressions.

Solve a series of
logical and
arithmetic
expression

problems in a
timed, in-class

quiz.

Write a program that
takes two numbers

and prints the results
of a variety of

operations (+, -, *, /,
%, ==, >).

9
Flow Control:

If-Else
Statements

Students will be able
to write conditional

statements to
control program

flow.

"Code
completion"

exercise: Fill in
the blanks of a
program that

checks if a
number is
positive,

negative, or zero.

Write a program that
takes a student's

grade as input and
prints "Pass" if the

grade is 50 or above,
and "Fail" otherwise.

10 Flow Control:
Loops

Students will be able
to use for, while, and

do-while loops to
repeat code blocks.

Small-group
exercise: Design
a program that
prints numbers

from 1 to 10 using
a for loop, a while

loop, and a
do-while loop.

Write a program that
uses a while loop to
repeatedly ask the
user for input until

they enter the word
"quit".

11 Arrays

Students will be able
to declare and

manipulate single
and

multi-dimensional
arrays.

In-class coding:
Create an array

of 5 integers and
calculate their

sum and average.

Write a program that
initializes a 2D array
(e.g., a tic-tac-toe

board) and prints it to
the console.

CO1

CO1

CO1

CO1

CO1

CO1

CO1

PROGRAMMING WITH C++

3

12 Pointers

Students will be able
to use pointers to

store memory
addresses and

dereference them to
access values.

Live demo: Draw
a diagram on the
board illustrating
how pointers and

variables are
stored in
memory.

Write a program that
declares an integer

variable, a pointer to
that integer, and

prints both the value
of the variable and
the value accessed
through the pointer.

13 Abstraction &
Classes (Part 1)

Students will be able
to define a basic

class and
differentiate it from

a struct.

Class discussion:
Brainstorm the

data and
behaviors for a

Car class.

Define a class for a
Rectangle with private
member variables for

length and width.

14 Abstraction &
Classes (Part 2)

Students will be able
to define member
data and member
functions within a

class.

In-class coding:
Add a

calculateArea()
member function
to the Rectangle

class from the
previous lesson.

Add a setLength() and
setWidth() member

function to the
Rectangle class to
allow modifying its

dimensions.

15 Public and
Private Access

Students will be able
to explain and use

the public and
private access

specifiers to enforce
encapsulation.

Short group
exercise: Analyze
a provided code

snippet and
identify which
variables and
functions are

accessible from
outside the class.

Modify the Rectangle
class to make the
member variables

private and provide
public "getter" and
"setter" methods.

16 Constructors

Students will be able
to create default,

parameterized, and
copy constructors

for a class.

Live coding
demo: Create a

class with
multiple

constructors and
show how to
instantiate

objects using
each one.

Write a class for a
Book with a

parameterized
constructor that takes
title, author, and year

as input.

17 Destructors and
Inline Functions

Students will be able
to understand the
role of destructors

and use inline
functions to

optimize
performance.

Walk through a
program's

execution to
demonstrate

when a
destructor is

called.

Create a simple class
that allocates memory
in its constructor and

frees it in its
destructor.

CO1

CO2

CO2

CO2

CO2

CO2

Unit II: Abstraction Mechanism: Classes & Objects(13 Hours)

PROGRAMMING WITH C++

4

18 Static Members

Students will be able
to use static data

members and static
member functions.

In-class coding:
Add a static

member variable
to a Student
class to keep

track of the total
number of

students created.

Write a class with a
static member

function that returns
the total count of
objects created.

19 Friend Functions

Students will be able
to declare a friend
function to grant

access to a class's
private members.

Pair
programming:

Write a function
that is not a
member of a

class but needs
to access its

private data, then
make it a friend.

Create two classes, A
and B, and make a
function a friend of
both to swap their

private data members.

20 References

Students will be able
to use references as
aliases for variables

and as function
parameters.

Live coding
demo: Show the

difference
between passing

arguments by
value, by pointer,
and by reference.

Write a function that
swaps the values of

two integer variables
using references.

21 Single
Inheritance

Students will be able
to create a derived
class that inherits
from a single base

class.

In-class coding:
Create a Vehicle
base class and a

Car derived class.

Extend the Vehicle
and Car example by

adding a Bicycle
derived class.

22 Multiple
Inheritance

Students will be able
to use multiple

inheritance to create
a class from two or
more base classes.

Live coding demo
demonstrating

the syntax and a
potential issue
(the "diamond
problem") with

multiple
inheritance.

Define two base
classes, Swimmer and
Runner, and create a
Triathlete class that
inherits from both.

23
Multilevel and

Hybrid
Inheritance

Students will be able
to implement

multilevel and hybrid
inheritance.

Group exercise:
Draw a class

hierarchy on the
board for a
Person ->

Employee ->
Manager

relationship.

Write a program that
implements a hybrid

inheritance structure.

CO2

CO2

CO2

CO2

CO2

CO2

PROGRAMMING WITH C++

5

24 Virtual Base
Class

Students will be able
to use a virtual base

class to solve the
diamond problem.

A step-by-step
whiteboard

session
illustrating the

memory layout of
an object with
and without a
virtual base

class.

Refactor the code
from Lesson 22 to use

a virtual base class
and demonstrate that
the diamond problem

is resolved.

25
Constructors/De

structors in
Inheritance

Students will be able
to trace the

execution order of
constructors and
destructors in an

inheritance
hierarchy.

Debugging
exercise: Analyze
a program with

print statements
in each

constructor and
destructor to

trace the order of
execution.

Create a program with
a base class and two

levels of derived
classes and confirm

the
constructor/destructo

r call order.

26 Introduction to
Polymorphism

Students will be able
to define

polymorphism and
distinguish between
static and dynamic

binding.

Class discussion:
Use a real-world

example like a
print() function

working on
different shapes

to explain
polymorphism.

Research and write a
brief summary on the
difference between

early binding and late
binding.

27

Static
Polymorphism:

Function
Overloading

Students will be able
to overload
functions by
changing the

number or type of
their parameters.

In-class coding:
Overload a
function to

calculate the
area of both a

circle and a
rectangle.

Create a function
named add that is
overloaded to add
two integers, two
doubles, or three

integers.

28

Dynamic
Polymorphism:

Base Class
Pointer

Students will be able
to use a base class
pointer to point to a
derived class object.

Live coding demo
showing how a

base class
pointer can call a

derived class's
function if the

function is virtual.

Write a simple
program with a Shape
base class and Circle
and Square derived
classes, and use a

Shape pointer to hold
instances of both.

29
Dynamic

Polymorphism:
Object Slicing

Students will be able
to identify and
explain object

slicing.

Debugging
exercise: Provide
a code snippet

that
demonstrates

object slicing and
have students

identify the bug.

Write a program that
purposely causes
object slicing and
then explain why it

occurred.

CO2

CO2

CO3

CO3

CO3

CO3

Unit III: Inheritance & Polymorphism (Part 1)(7 Hours)

PROGRAMMING WITH C++

6

30 Late Binding and
Virtual Functions

Students will be able
to implement late

binding using virtual
functions for

method overriding.

Pair
programming:

Modify a
program to add a
virtual keyword to

a base class
function to
enable late

binding.

Create a Vehicle class
with a virtual drive()

function and two
derived classes, Car
and Motorcycle, that
override the function.

31

Pure Virtual
Functions &

Abstract Classes
(Part 1)

Students will be able
to define a pure

virtual function and
create an abstract

class.

Live coding
demo: Create a
Shape abstract

class with a pure
virtual getArea()

function.

Write a program that
defines an abstract

base class with a pure
virtual function and

tries to instantiate an
object of that class to

see the error.

32

Pure Virtual
Functions &

Abstract Classes
(Part 2)

Students will be able
to create a concrete
class by inheriting

from and
implementing all

pure virtual
functions of an
abstract class.

In-class coding:
Create a Circle

derived class that
inherits from the
Shape abstract

class and
provides an

implementation
for getArea().

Write a program that
creates an abstract

class and two
concrete derived

classes.

33 The this Pointer

Students will be able
to explain the

purpose of the this
pointer and use it in

their code.

Live coding
demo: Show how

to use this to
return an object
from a member
function or to
differentiate

between member
data and a local

variable.

Write a class with a
setter function that

returns a reference to
the object (return
*this;) to allow for

chaining method calls.

34 Operator
Function

Students will be able
to write an operator

function.

Short quiz on the
syntax for
operator

functions.

Write a class for a
Point in a 2D plane

and define a member
operator function to

add two Point objects.

35 Operator
Overloading

Students will be able
to overload unary

and binary
operators for

custom classes.

Live coding demo
of overloading
the ++ and --

operators for a
custom class.

Write a class that
overloads the +

operator to perform
vector addition.

36
Overloading

Binary Operators
(Part 1)

Students will be able
to overload a binary

operator for a
custom class.

Pair
programming:
Overload the +
operator for a

Complex number
class.

Extend the Complex
number class to also

overload the -
operator.

CO3

CO3

CO3

CO4

CO4

CO4

CO4

Unit IV: Polymorphism (Part 2) & Operator Overloading(8 Hours)

PROGRAMMING WITH C++

7

37
Overloading

Binary Operators
(Part 2)

Students will be able
to implement

operator
overloading as a

non-member
function.

In-class coding:
Rewrite the +

operator
overload for the

Complex class as
a non-member

function.

Overload the *
operator for the

Complex class as a
non-member

function.

38
Overloading I/O
Operators (<<

and >>)

Students will be able
to overload the

stream insertion and
extraction
operators.

Live coding demo
showing how to
make a custom
class work with

cout and cin.

Overload the >> and
<< operators for the

Point class to allow for
easy input and

output.

39
More on
Operator

Overloading

Students will be able
to overload the
subscript [] and
function call ()

operators.

In-class coding:
Overload the []
operator for a
custom Array

class.

Create a class that
overloads the ()

operator to act as a
functor (function

object).

40
Final Review of

Operator
Overloading

Students will be able
to apply the
principles of

operator
overloading to new

problems.

Group activity: A
code challenge

to overload
multiple

operators for a
new class (e.g., a

Matrix class).

Debug a provided
program with several
operator overloads
that are not working

correctly.

41
Exception

Handling: try,
throw, and catch

Students will be able
to use try, throw,

and catch blocks to
handle exceptions.

Live coding demo
showing how to
throw and catch

an integer
exception.

Write a function that
throws an exception if
a number is negative
and a main function

that catches it.

42 Exceptions and
Derived Classes

Students will be able
to throw and catch

exceptions of
derived class types.

In-class coding:
Create a base

exception class
and a derived

exception class,
then show how a
base class catch
block can handle

both.

Modify the program
from Lesson 41 to use

a custom exception
class.

43
Function

Exception
Declaration

Students will be able
to declare which

exceptions a
function can throw.

Class discussion
on the benefits

and drawbacks of
using exception
specifications.

Write a function with
an exception

specification that
throws an exception

not listed in the
specification to see

what happens.

CO4

CO4

CO4

CO4

CO5

CO5

CO5

Unit V: Exception Handling(5 Hours)

