

GOVT POLYTECHNIC BOLANGIR
Department of Mechanical Engineering
LESSON PLAN: 2025-26
Name of the Faculty: Rasmi Ranjan Jena (Lecturer Stage-I)
Subject: Thermal Engineering-II (TH2) (MEPC204)
Program: Diploma in Mechanical Engineering Semester: 4th Total Contact Hours: 45
Total Marks: 100 Assessment: Progressive –30, End Term – 70
Credits: 3

COURSE OBJECTIVES:

After completion of the course, the students will be able to

1. Explain the working cycle of gas turbines, and the working of Jet and Rocket Engines apart from identifying the fuels used for Jet and Rocket propulsion
2. Compute the work done, enthalpy, internal energy and entropy of steam at given conditions using steam tables and Mollier chart.
3. Distinguish between water tube and fire-tube boilers and explain the function all the mountings and accessories.
4. Calculate Velocity of steam at the exit of nozzle in terms of heat drop analytically and by using Mollier chart..
5. State the necessity of governing and compounding of a turbine

UNIT-I: Gas Turbines & Jet Propulsion (10 Classes)

Class No.	Topic	Sub topics to be Covered	Teaching Aids / Activities	COs
1	Introduction to Gas Turbines	Definition of gas turbine,Basic components,Importance and applications	Chalk & board, PPT, real-life examples	CO1
2	Air-Standard Brayton Cycle	Processes of Brayton cycle,Assumptions,Work output & efficiency	Chalk & board, numerical examples	CO1
3	Brayton Cycle Diagrams	P-V diagram,T-S diagram,Effect of pressure ratio	Board work, problem solving	CO1
4	Classification of Gas Turbines	Open cycle gas turbines,Closed cycle gas turbines,Advantages & disadvantages	Chalk & board	CO1
5	Open Cycle Gas Turbine	General layout,Working principle,P-V & T-S diagrams	PPT, Chalk & board	CO1
6	Closed Cycle Gas Turbine	General layout,Working principle,P-V & T-S diagrams	PPT, Chalk & board	CO1
7	Gas Turbine Comparison & Applications	Gas turbine vs IC engine, Gas turbine vs steam turbine, Applications & limitations	PPT, Chalk & board	CO1

8	Introduction to Jet Propulsion	Principle of jet propulsion, Fuels used for jet propulsion, Applications	PPT, schematic diagram	CO1
9	Turbojet & Ramjet Engines	Working of turbojet engine, Ram effect, Working of ramjet engine	PPT, schematic diagram	CO1
10	Rocket Propulsion & Comparison	Principle of rocket propulsion, Working of rocket engine, Applications, Jet vs rocket propulsion	PPT, schematic diagram	CO1

UNIT-II: Properties of Steam (10 Classes)

11	Formation & Uses of Steam	Formation of steam under constant pressure, Industrial uses of steam	PPT, Chalk & board	CO2
12	Steam Phases & Regions	Saturated liquid line, Saturated vapor line, Liquid, wet, vapor & superheat regions, Critical point	PPT, Chalk & board	CO2
13	Basic Definitions – I	Saturated liquid & saturated vapor, Saturation temperature, Sensible heat & latent heat	Board & charts	CO2
14	Basic Definitions – II	Wet steam, Dryness fraction & wetness fraction, Saturated & superheated steam, Degree of superheat	Board & charts	CO2
15	Properties of Wet Steam	Enthalpy of wet steam, Internal energy of wet steam, Entropy of wet steam	PPT, Chalk & board	CO2
16	Properties of Dry & Superheated Steam	Enthalpy, Internal energy, Entropy of dry & superheated steam	PPT, Chalk & board	CO2
17	Steam Processes – I	Isochoric process, Isobaric process, Isothermal process	PPT, Chalk & board	CO2
18	Steam Processes – II	Isentropic process, Throttling process, Hyperbolic & polytropic processes	PPT, Chalk & board	CO2
19	Simple Numerical Problems	Direct problems on steam tables, Mollier chart-based problems	Chalk & board, Problem solving	CO2
20	Steam Calorimeters	Separating calorimeter, Throttling calorimeter, Combined separating & throttling calorimeter, Numerical problems	Chalk & board, Problem solving	CO2

UNIT-III: Steam Generators / Boilers (8 Classes)

21	Introduction to Steam Boilers	Function and use of steam boilers,Industrial applications,Basic boiler terminology	PPT, cut-section images	CO3
22	Classification of Steam Boilers	Fire tube and water tube boilers,Classification based on pressure, axis, circulation, use,Examples	PPT, Chalk & board	CO3
23	Fire Tube Boiler – Cochran Boiler	Construction,Line sketch,Working principle,Advantages & limitations	PPT, Chalk & board	CO3
24	Water Tube Boiler – Babcock & Wilcox Boiler	Construction,Line sketch,Working principle,Advantages	PPT, discussion	CO3
25	Comparison of Boilers	Water tube vs Fire tube boilers,Applications	PPT, Chalk & board,Models	CO3
26	High Pressure Boilers	Lamont boiler – construction & working,Benson boiler – construction & working	Real component / PPT	CO3
27	Boiler Mountings	Pressure gauge,Water level indicator,Safety valve (dead weight & spring loaded),Fusible plug,Blow down cock,Stop valve	PPT, Chalk & board	CO3
28	Boiler Accessories	Feed pump,Economizer,Super heater,Air preheater,Steam traps & separators	PPT, Chalk & board	CO3

UNIT-IV: Steam Nozzles (10 Classes)

29	Introduction to Steam Nozzles	Definition of steam nozzle,Function and applications,Types of nozzles	PPT, Chalk & board	CO4
30	Flow of Steam Through Nozzle	Steady flow of steam,Energy conversion in nozzle,Assumptions	PPT, Chalk & board	CO4
31	Velocity of Steam – Analytical Method	Heat drop concept,Derivation of exit velocity equation,Assumptions	PPT, Chalk & board	CO4
32	Velocity of Steam – Mollier Chart	Use of h-s chart,Determination of heat drop,Exit velocity calculation	Chalk & board	CO4
33	Discharge Through Nozzle	Mass flow rate,Continuity equation,Effect of pressure	Chalk & board	CO4
34	Critical Pressure Ratio	Meaning of critical pressure,Critical pressure ratio for steam,Maximum discharge condition	Chalk & board	CO4

35	Nozzle Area Calculations	Throat area calculation, Exit area calculation, Maximum discharge condition	PPT, Chalk & board	CO4
36	Effect of Friction & Supersaturated Flow	Effect of friction on velocity & discharge, Supersaturated flow, Losses in nozzle	PPT, discussion	CO4
37	Steam Jet Injector	Construction, Working principle, Applications	PPT, Chalk & board	CO4
38	Numerical Problems & Revision	Simple direct problems on nozzle velocity, Discharge & area calculation, Overall revision	PPT, Chalk & board	CO4

UNIT-V: Steam Turbines (7 Classes)

39	Introduction & Classification of Steam Turbines	Classification of steam turbines with examples, Impulse and reaction turbines, Applications	PPT, Chalk & board	CO5
40	Impulse vs Reaction Turbines	Difference between impulse & reaction turbines, Advantages & limitations	PPT, Chalk & board	CO5
41	De-Laval Turbine – Principle & Velocity Diagrams	Construction & working principle, Line diagrams, Velocity diagrams	PPT, Chalk & board	CO5
42	Performance of Impulse Turbine	Work done, Axial & tangential thrust, Blade diagram, stage & nozzle efficiency	PPT, Chalk & board	CO5
43	Compounding of Steam Turbines	Need for reducing rotor speed, Velocity compounding, Pressure compounding, Pressure-velocity compounding	Chalk & board	CO5
44	Parson's Reaction Turbine	Construction & working principle, Line diagrams, Velocity diagrams	Chalk & board	CO5
45	Turbine Problems & Governing	Simple problems on impulse & reaction turbines, Blade height problems, Governing: throttle, by-pass & nozzle control	Chalk & board	CO5

Signature of Faculty

BA
22/12/25

Signature of HOD
22/12/25

H.O.D.

Dept. of Mechanical Engg.
Govt. Polytechnic Bolangir